학술논문

Understanding the Representativeness of Tree Rings and Their Carbon Isotopes in Characterizing the Climate Signal of Tajikistan
Document Type
article
Source
Forests, Vol 12, Iss 9, p 1215 (2021)
Subject
stable isotopes
climate change
tree rings
Tajikistan
Plant ecology
QK900-989
Language
English
ISSN
1999-4907
Abstract
The juniper tree forest is a critical component of the carbon, water, and energy cycles of Tajikistan. However, to date, long-term information about tree-ring isotopes is limited in this region. Here, we developed tree-ring width (TRW) and tree-ring 13C chronologies for juniper trees (Juniperus seravschanica (Juniperus excelsa subsp.polycarpos (K. Koch) Takht.) and Juniperus turkestanica (Juniperus pseudosabina Fisch. & C. A. Mey)) and investigated their dendroclimatic signals in the northwest of the Pamir-Alay (NWPA) mountains in Tajikistan. Tree-ring ∆13C and TRW of juniper presented different sensitivities to monthly precipitation. Moreover, ∆13C in juniper showed consistently significant relationships with climatic factors in larger seasonal windows than TRW did. Dendroclimatological analysis demonstrates that precipitation has significant effects on tree growth and isotope enrichment. Late summer to early winter temperature is one limiting factor for the TRW chronologies, but previous spring, summer, and autumn temperature and precipitation from the previous July to the current May were the dominant climatic factors accounting for inter-annual variations in the ∆13C chronologies. This verified that the multi tree-ring parameters of juniper in Tajikistan are a promising tool for investigating inter-annual climate variations. Furthermore, the stable carbon isotopes of tree rings have proven to be powerful evidence of climatic signals. The moisture-sensitive tree-ring isotope provides opportunities for complex investigations of changes in atmospheric circulation patterns and timing of seasonal rainfall. Our results highlight the need for more detailed studies of tree growth responses to changing climate and tree-ring isotopes to understand source water variations (especially baseflow) of the juniper tree forest.