학술논문

Sequential inspiratory muscle exercise-noninvasive positive pressure ventilation alleviates oxidative stress in COPD by mediating SOCS5/JAK2/STAT3 pathway
Document Type
article
Source
BMC Pulmonary Medicine, Vol 23, Iss 1, Pp 1-12 (2023)
Subject
Chronic obstructive pulmonary disease
Noninvasive positive pressure ventilation
Inspiratory muscle training
Oxygen therapy
Oxidative stress
Diseases of the respiratory system
RC705-779
Language
English
ISSN
1471-2466
Abstract
Abstract Background Pulmonary rehabilitation training is of great significance for the prognosis of chronic obstructive pulmonary disease (COPD) patients. The purpose of this study was to investigate the therapeutic effect and pathway of a new sequential noninvasive positive pressure ventilation (NIPPV) + inspiratory muscle training (IMT) therapy. Methods A total of 100 COPD patients were enrolled and randomly divided into oxygen therapy (OT), NIPPV, IMT and sequential (NIPPV + IMT) group. Lung function, exercise endurance, quality of life, and dyspnea symptoms were examined and recorded. Then, reactive oxygen species (ROS), malonaldehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH) levels were detected by enzyme-linked immunoassay, and suppressor of cytokine signaling 5 (SOCS5)/janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway expression changes were detected by quantitative real time-polymerase chain reaction (qRT-PCR) and western blot. A mouse model of COPD was then established to further verify the effects of SOCS5/JAK2/STAT3 pathways on lung function and oxidative stress. Results After 8 weeks of treatment, NIPPV, IMT or sequential (NIPPV + IMT) significantly improved exercise endurance, quality of life and dyspnea, reduced oxidative stress, promoted SOCS5 expression and inhibited the activation of JAK2/STAT3 pathway, and no significant effect was observed on lung function of COPD patients. Notably, sequential (NIPPV + IMT) showed better therapeutic outcomes than either IMT or NIPPV alone. Moreover, results at the animal level showed that overexpression of SOCS5 significantly reduced pulmonary inflammatory infiltration, pathological changes and oxidative stress levels in COPD mice, enhanced lung function, and inhibited the activation of JAK2/STAT3 pathway. Conclusion Our results elucidated that sequential (NIPPV + IMT) significantly relieved COPD development by regulating SOCS5/JAK2/STAT3 signaling-mediated oxidative stress.