학술논문

CAR-Tourist: An Integrity-Preserved Collaborative Augmented Reality Framework-Tourism as a Use-Case
Document Type
article
Source
Applied Sciences, Vol 12, Iss 23, p 12022 (2022)
Subject
AR
virtual reality
displays and tracking technology
collaborative AR
Technology
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
Language
English
ISSN
2076-3417
Abstract
The unprecedented growth in Augmented Reality (AR) has captured the focus of researchers and the industrial sector. The development of AR applications and their implementation in various domains is broadening. One of the advancements in the field of AR is Collaborative AR, which provides ample opportunities for the members of a team to work on a particular project remotely. The various activities carried out remotely, in a collaborative fashion, are based on the active interaction and transmission of data and applications across a communication channel that constitutes a mesh of frequently interacting applications, thus providing a real feeling of working together physically in the purportedly same demographic area. However, in the integration of different roles, remotely working in collaborative AR has a great chance of being intruded upon and manipulated. Consequently, the intrusion may explore novel vulnerabilities to various sensitive collaborative projects. One of the security concerns for collaborative and interconnected remote applications is to have pristine environments, where the participants of the collaborative AR can reliably trust each other during the execution of the various processes. This paper presents an integrity-aware CAR-Tourist (Collaborative Augmented reality for Tourism) framework wherein the unauthorized user’s access is denied and the remote participants of the network are provided with a secure environment through the state-of-the-art Blockchain architecture. This study further provides a use-case implementation of a tourism application. Each tourist has the chance to hire a remote guide for collaborative guidance over a blockchain-trusted network. Moreover, the proposed framework is lightweight, as the only necessary communication between the tourist and guide is recorded in the blockchain network. Each user has to register on a permission blockchain to be allowed to perform certain activities on our proposed CAR-Tourist framework. The decentralized Blockchain approach provides a consensus mechanism based on which not every participant is free to intrude on ongoing communication. Thus, through the proposed framework, all the participants in the collaborative Augmented Reality will have the essential trust of working remotely without external intrusion.