학술논문

Intelligent Sine Cosine Optimization with Deep Transfer Learning Based Crops Type Classification Using Hyperspectral Images
Document Type
article
Source
Canadian Journal of Remote Sensing, Vol 48, Iss 5, Pp 621-632 (2022)
Subject
Environmental sciences
GE1-350
Technology
Language
English
French
ISSN
1712-7971
07038992
Abstract
Hyperspectral Remote Sensing (HRS) is an emergent, multidisciplinary paradigm with several applications, which are developed on the basis of material spectroscopy, radiative transfer, and imaging spectroscopy. HRS plays a vital role in agriculture for crops type classification and soil prediction. The recently developed artificial intelligence techniques can be used for crops type classification using HRS. This study develops an Intelligent Sine Cosine Optimization with Deep Transfer Learning Based Crop Type Classification (ISCO-DTLCTC) model. The ISCO-DTLCTC technique comprises initial preprocessing step to extract the region of interest. The information gain-based feature reduction technique is employed to reduce the dimensionality of the original hyperspectral images. In addition, a fusion of 3 deep convolutional neural networks models namely, VGG16, SqueezeNet, and Dense-EfficientNet perform feature extraction process. Furthermore, sine cosine optimization (SCO) algorithm with Modified Elman Neural Network (MENN) model is applied for crops type classification. The design of SCO algorithm helps to proficiently select the parameters involved in the MENN model. The performance validation of the ISCO-DTLCTC model is carried out using benchmark datasets and the results are inspected under several measures. Extensive comparative results demonstrated the betterment of the ISCO-DTLCTC model over the state of art approaches with maximum accuracy of 99.99%.