학술논문

Chemical Composition and Bioactivity of Dill Seed (Anethum graveolens L.) Essential Oil from Plants Grown under Shading
Document Type
article
Source
Plants, Vol 13, Iss 6, p 886 (2024)
Subject
shading
dill seed
essential oil
content
chemical composition
Botany
QK1-989
Language
English
ISSN
2223-7747
Abstract
This study determined the content and composition of dill seed (Anethum graveolens L.) essential oil under varying light conditions: non-shaded plants in open fields and plants covered with pearl shade nets (40% shade index). Essential oil was extracted using Clevenger hydrodistillation. The essential oil content was 4.63% for non-shaded plants and 4.81% for shaded plants. GC/MS analysis revealed twenty-one and twenty-two components in dill seed from non-shaded and shaded plants, respectively. The terpenic fraction of essential oil from non-shaded plants consisted mainly of oxygen-containing monoterpene derivatives (53.6%), with carvone (46.1%) as the primary component, followed by monoterpene hydrocarbons (46.4%), predominantly limonene (43.8%). Essential oil from shaded plants contained a higher content of carvone (49.8%) and a lower content of limonene (37.8%) compared to essential oil from non-shaded plants. Non-shaded plant essential oil exhibited stronger antioxidant activity (EC50 value: 26.04 mg mL−1) than shaded plant essential oil (54.23 mg mL−1). Dill seed essential oil showed the most potent antimicrobial activity (disc diffusion method) against Escherichia coli (inhibition zone: 15–18 mm). Shaded plants demonstrated a positive influence of essential oil against Klebsiella pneumoniae. Carvone and its derivatives, as the main components, hold significant potential in the food industry and alternative medicines. A practical implication of this study could be higher plant densities or intercropping of dill, as it thrives with minimal light.