학술논문

Investigating the self-assembling of nicotinic hydrazide-based amphiphile into nano-range vesicles and its amphotericin B loading applications
Document Type
article
Source
Drug Delivery, Vol 30, Iss 1 (2023)
Subject
Synthesis
CMC
self-assembly
biocompatibility
drug delivery
Therapeutics. Pharmacology
RM1-950
Language
English
ISSN
10717544
1521-0464
1071-7544
Abstract
AbstractMost of the drugs are hydrophobic and have low water solubility, therefore posing issues in their absorption and bioavailability. Nonionic surfactants improve the solubility of hydrophobic drugs by entrapping them in their lipid bilayers. Two nonionic surfactants NODNH-16 and NODNH-18 are synthesized and characterized using different techniques i.e. EI-MS, 1H NMR, and FTIR. These newly synthesized surfactants were screened for blood hemolysis assay and cell toxicity studies using the NIH/3T3 cell line to assess their biocompatibility. Then amphotericin B was loaded into niosomal vesicles, and the drug entrapment efficiency of these surfactants was measured using UV–visible spectroscopy. The morphology of drug-loaded niosomes of synthesized surfactants was investigated using AFM, and their size, polydispersity, and zeta potential were measured with the Zetasizer instrument. Finally, a simulation study was performed to determine the pattern of self-assembly of the synthesized amphiphiles. Both synthesized nonionic surfactants showed good entrapment efficiency of 60.65 ± 2.12% and 68.45 ± 2.12%, respectively. It was also confirmed that both these synthesized nonionic surfactants were safe and biocompatible and showed less blood hemolysis (i.e. 21.13 ± 2.11% and 23.32 ± 2.45%) and higher 3T3 cells’ viability at 150 µg/mL concentration as compared to Tween®-80. The antifungal potential of amphotericin B-loaded niosomes has been evaluated against unicellular multi-fungal species, which showed a promising potential for fungicidal activity. These results are substantiated by constructing a safe vehicle system for drug delivery.