학술논문

Glissonean Pedicle Isolation Focusing on the Laennec’s Capsule for Minimally Invasive Anatomical Liver Resection
Document Type
article
Source
Journal of Personalized Medicine, Vol 13, Iss 7, p 1154 (2023)
Subject
anatomical liver resection
Glissonean pedicle isolation
Laennec’s capsule
laparoscopic surgery
robotic surgery
Medicine
Language
English
ISSN
2075-4426
Abstract
Background: Inflow control is one of the most important procedures during anatomical liver resection (ALR), and Glissonean pedicle isolation (GPI) is one of the most efficacious methods used in laparoscopic anatomical liver resection (LALR). Recognition of the Laennec’s capsule covering the liver parenchyma is essential for safe and precise GPI. The purpose of this study was to verify identification of the Laennec’s capsule, to confirm the validity of GPI in minimally invasive surgery, and to demonstrate the value of GPI focusing on the Laennec’s capsule using a robotic system that has been developed in recent years. Methods: We used a cadaveric model to simulate the Glissonean pedicle and the surrounding liver parenchyma for pathologic verification of the layers. We performed 60 LALRs and 39 robotic anatomical liver resections (RALRs) using an extrahepatic Glissonean approach, from April 2020 to April 2023, and verified the layers of the specimens removed during LALR and RALR based on pathologic examination. In addition, the surgical outcomes of LALR and RALR were compared. Results: Histologic examination facilitated by Elastica van Gieson staining revealed the presence of Laennec’s capsule covering the liver parenchyma in a cadaveric model. Similar findings were obtained following LALR and RALR, thus confirming that the gap between the Glissonean pedicle and the Laennec’s capsule can be dissected without injury to the parenchyma. The mean GPI time was 32.9 and 27.2 min in LALR and RALR, respectively. The mean blood loss was 289.7 and 131.6 mL in LALR and RALR, respectively. There was no significant difference in the incidence of Clavien–Dindo grade ≥III complications between the two groups. Conclusions: Laennec’s capsule is the most important anatomical landmark in performing a safe and successful extrahepatic GPI. Based on this concept, it is possible for LALR and RALR to develop GPI focusing on the Laennec’s capsule. Furthermore, a robotic system has the potential to increase the safety and decrease the difficulty of this challenging procedure.