학술논문

Transcriptional consequences of MBD5 disruption in mouse brain and CRISPR-derived neurons
Document Type
article
Source
Molecular Autism, Vol 11, Iss 1, Pp 1-15 (2020)
Subject
MBD5
Autism spectrum disorder
NDD
CRISPR
Mouse
Neurons
Neurology. Diseases of the nervous system
RC346-429
Language
English
ISSN
2040-2392
Abstract
Abstract Background MBD5, encoding the methyl-CpG-binding domain 5 protein, has been proposed as a necessary and sufficient driver of the 2q23.1 microdeletion syndrome. De novo missense and protein-truncating variants from exome sequencing studies have directly implicated MBD5 in the etiology of autism spectrum disorder (ASD) and related neurodevelopmental disorders (NDDs). However, little is known concerning the specific function(s) of MBD5. Methods To gain insight into the complex interactions associated with alteration of MBD5 in individuals with ASD and related NDDs, we explored the transcriptional landscape of MBD5 haploinsufficiency across multiple mouse brain regions of a heterozygous hypomorphic Mbd5 +/GT mouse model, and compared these results to CRISPR-mediated mutations of MBD5 in human iPSC-derived neuronal models. Results Gene expression analyses across three brain regions from Mbd5 +/GT mice showed subtle transcriptional changes, with cortex displaying the most widespread changes following Mbd5 reduction, indicating context-dependent effects. Comparison with MBD5 reduction in human neuronal cells reinforced the context-dependence of gene expression changes due to MBD5 deficiency. Gene co-expression network analyses revealed gene clusters that were associated with reduced MBD5 expression and enriched for terms related to ciliary function. Limitations These analyses included a limited number of mouse brain regions and neuronal models, and the effects of the gene knockdown are subtle. As such, these results will not reflect the full extent of MBD5 disruption across human brain regions during early neurodevelopment in ASD, or capture the diverse spectrum of cell-type-specific changes associated with MBD5 alterations. Conclusions Our study points to modest and context-dependent transcriptional consequences of Mbd5 disruption in the brain. It also suggests a possible link between MBD5 and perturbations in ciliary function, which is an established pathogenic mechanism in developmental disorders and syndromes.