학술논문

Bioinformatic Analysis of Lytic Polysaccharide Monooxygenases Reveals the Pan-Families Occurrence of Intrinsically Disordered C-Terminal Extensions
Document Type
article
Source
Biomolecules, Vol 11, Iss 11, p 1632 (2021)
Subject
intrinsically disordered regions
lytic polysaccharide monooxygenase
LPMO
redox-sensitive
conditionally disordered regions
disorder prediction
Microbiology
QR1-502
Language
English
ISSN
2218-273X
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes secreted by many organisms and viruses. LPMOs catalyze the oxidative cleavage of different types of polysaccharides and are today divided into eight families (AA9–11, AA13–17) within the Auxiliary Activity enzyme class of the CAZy database. LPMOs minimal architecture encompasses a catalytic domain, to which can be appended a carbohydrate-binding module. Intriguingly, we observed that some LPMO sequences also display a C-terminal extension of varying length not associated with any known function or fold. Here, we analyzed 27,060 sequences from different LPMO families and show that 60% have a C-terminal extension predicted to be intrinsically disordered. Our analysis shows that these disordered C-terminal regions (dCTRs) are widespread in all LPMO families (except AA13) and differ in terms of sequence length and amino-acid composition. Noteworthily, these dCTRs have so far only been observed in LPMOs. LPMO-dCTRs share a common polyampholytic nature and an enrichment in serine and threonine residues, suggesting that they undergo post-translational modifications. Interestingly, dCTRs from AA11 and AA15 are enriched in redox-sensitive, conditionally disordered regions. The widespread occurrence of dCTRs in LPMOs from evolutionarily very divergent organisms, hints at a possible functional role and opens new prospects in the field of LPMOs.