학술논문

Micro-Computed Tomography Beamline of the Australian Synchrotron: Micron-Size Spatial Resolution X-ray Imaging
Document Type
article
Source
Applied Sciences, Vol 13, Iss 3, p 1317 (2023)
Subject
X-ray micro-CT
absorption contrast
phase-contrast
computed tomography
synchrotron
Technology
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
Language
English
ISSN
13031317
2076-3417
Abstract
The first new beamline of the BRIGHT project—involving the construction of eight new beamlines at the Australian Synchrotron—is the Micro-Computed Tomography (MCT) beamline. MCT will extend the facility’s capability for higher spatial resolution X-ray-computed tomographic imaging allowing for commensurately smaller samples in comparison with the existing Imaging and Medical Beamline (IMBL). The source is a bending-magnet and it is operating in the X-ray energy range from 8 to 40 keV. The beamline provides important new capability for a range of biological and material-science applications. Several imaging modes will be offered such as various X-ray phase-contrast modalities (propagation-based, grating-based, and speckle-based), in addition to conventional absorption contrast. The unique properties of synchrotron radiation sources (high coherence, energy tunability, and high brightness) are predominantly well-suited for producing phase contrast data. An update on the progress of the MCT project in delivering high-spatial-resolution imaging (in the order of micron size) of mm-scale objects will be presented in detail with some imaging results from the hot-commissioning stage.