학술논문

Reliability and sensitivity to altered hemodynamics measured with resting-state fMRI metrics: Comparison with 123I-IMP SPECT
Document Type
article
Source
NeuroImage, Vol 263, Iss , Pp 119654- (2022)
Subject
Cerebral blood flow
fMRI
Perfusion imaging
Measurement reliability
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
Language
English
ISSN
1095-9572
Abstract
Blood oxygenation level-dependent (BOLD) contrast is sensitive to local hemodynamic changes and thus is applicable to imaging perfusion or vascular reactivity. However, knowledge about its measurement characteristics compared to reference standard perfusion imaging is limited. This study longitudinally evaluated perfusion in patients with steno-occlusive disease using resting-state functional MRI (rsfMRI) acquired before and within nine days of anterior circulation revascularization in patients with large cerebral artery steno-occlusive diseases. The reliability and sensitivity to longitudinal changes of rsfMRI temporal correlation (Rc) and time delay (TDc) relative to the cerebellar signal were examined voxel-wise in comparison with single-photon emission CT (SPECT) cerebral blood flow (CBF) using the within-subject standard deviation (Sw) and intraclass correlation coefficients (ICCs). For statistical comparisons, the standard deviation (SD) of longitudinal changes within the cerebellum, the number of voxels with significant changes in the left middle cerebral artery territory ipsilateral to surgery, and their average changes relative to the cerebellar SD were evaluated. The test-retest reliability of the fMRI metrics was also similarly evaluated using the human connectome project (HCP) healthy young adult dataset. The test-retest time interval was 31 ± 18 days. Test-retest reliability was significantly higher for SPECT (cerebellar SD: −2.59 ± 0.20) than for fMRI metrics (cerebellar SD: Rc, −2.34 ± 0.24, p = 0.04; TDc, −2.19 ± 0.21, p = 0.003). Sensitivity to postoperative changes, which was evaluated as the number of voxels, was significantly higher for fMRI TDc (8.78 ± 0.72) than for Rc (7.42 ± 1.48, p = 0.03) or SPECT CBF (6.88 ± 0.67, p