학술논문

Correlation redistribution by causal horizons
Document Type
article
Source
European Physical Journal C: Particles and Fields, Vol 82, Iss 2, Pp 1-16 (2022)
Subject
Astrophysics
QB460-466
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Language
English
ISSN
1434-6044
1434-6052
Abstract
Abstract The Minkowski vacuum $$|0\rangle _M$$ | 0 ⟩ M , which for an inertial observer is devoid of particles, is perceived as a thermal bath by Rindler observers living in a single Rindler wedge (Unruh in Phys Rev D 14:870, 1976) as a result of the discrepancy in the definition of positive frequency between the two classes of observers and a strong entanglement between degrees of freedom in the left and right Rindler wedges. We revisit the problem of quantification of the correlations in a two-mode state of a free neutral scalar field which is observed by an inertial observer Alice and left/right Rindler observers Rob/AntiRob, a problem that pertains to the field of relativistic quantum information and has been previously studied in Martin-Martinez et al. (Phys Rev D 82:064006, 2010) and Datta (Phys Rev A 80:052304, 2009). We focus on the analysis of informational quantities like the locally accessible and locally inaccessible information (Koashi and Winter in Phys Rev A 69:022309, 2004; Fanchini et al. in Phys Rev A 84:012313, 2011; Fanchini et al. in New J Phys 14:013027, 2012) and a closely associated entanglement measure, the entanglement of formation. We conclude that, with respect to the correlation structure probed by inertial observers alone, the introduction of a Rindler observer gives rise to a correlation redistribution which can be quantified by the entanglement of formation. Given the informational meaning of the derived correlations, we discuss on the capacity of a quantum channel to communicate classical information between accelerated parties.