학술논문

Online dynamic flat-field correction for MHz microscopy data at European XFEL
Document Type
article
Source
Journal of Synchrotron Radiation, Vol 30, Iss 6, Pp 1030-1037 (2023)
Subject
mhz x-ray microscopy
flat-field correction
online data processing
x-ray free-electron laser
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Crystallography
QD901-999
Language
English
ISSN
1600-5775
16005775
Abstract
The high pulse intensity and repetition rate of the European X-ray Free-Electron Laser (EuXFEL) provide superior temporal resolution compared with other X-ray sources. In combination with MHz X-ray microscopy techniques, it offers a unique opportunity to achieve superior contrast and spatial resolution in applications demanding high temporal resolution. In both live visualization and offline data analysis for microscopy experiments, baseline normalization is essential for further processing steps such as phase retrieval and modal decomposition. In addition, access to normalized projections during data acquisition can play an important role in decision-making and improve the quality of the data. However, the stochastic nature of X-ray free-electron laser sources hinders the use of standard flat-field normalization methods during MHz X-ray microscopy experiments. Here, an online (i.e. near real-time) dynamic flat-field correction method based on principal component analysis of dynamically evolving flat-field images is presented. The method is used for the normalization of individual X-ray projections and has been implemented as a near real-time analysis tool at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument of EuXFEL.