학술논문

Salinity Gradient Power Driven Water Electrolysis for Hydrogen Production
Document Type
article
Source
Chemical Engineering Transactions, Vol 60 (2017)
Subject
Chemical engineering
TP155-156
Computer engineering. Computer hardware
TK7885-7895
Language
English
ISSN
2283-9216
Abstract
The present work demonstrates an innovative system combining Reverse Electrodialysis (RED) and Alkaline Polymer Electrolyte Water Electrolysis (APEWE) for sustainable hydrogen production. The Salinity Gradient Power (SGP)-RED unit was tested with a thermally regenerative solution of NH4HCO3 in the concentration range of 0.15-1.5 M, whereas the water electrolysis unit equipped with quaternary ammonium functionalized anion selective membrane, Ni anode modified with Platinum Group Metal (PGM)-free electrocatalyst, Ni cathode modified with an electrochemically Reduced Graphene Oxide (RGO) was investigated at a varying temperature (50 - 80 °C). The integrated RED-APEWE system reached a maximum hydrogen production rate of 3.0x10-3 mol H2/h per cm2 of electrode surface area. Owing to the use of the thermally regenerative NH4HCO3 solution, this work presents a profound basis to design a system allowing the conversion of low-grade waste heat into electricity in a closed loop with simultaneous production of hydrogen using salinity gradient energy.