학술논문

Processing Conditions Optimization for the Synthesis and Consolidation of High-Entropy Diborides
Document Type
article
Source
Eurasian Chemico-Technological Journal, Vol 23, Iss 3 (2021)
Subject
UHTCs
HEBs
oxides
graphite
SPS
SHS
Chemistry
QD1-999
Language
English
ISSN
1562-3920
2522-4867
Abstract
This paper is devoted to the celebration of 75 years’ jubilee of Professor Zulkhair Mansurov. One of the authors (Roberto Orrù) would like to acknowledge Zulkhair Mansurov for his vigorous effort given for the development and diffusion of the Eurasian Chemico-Technological Journal. The fabrication by Spark Plasma Sintering (SPS) of bulk high entropy ceramics from powders obtained by Self-propagating High temperature Synthesis (SHS) is addressed in this work. The effect produced by the introduction of 1 wt.% of graphite to the powders before SPS is investigated under different temperature conditions. The final density and composition of sintered (Hf0.2Mo0.2Zr0.2Ti0.2Ta0.2)B2 and (Hf0.2Mo0.2Zr0.2Ti0.2Nb0.2)B2 ceramics are found to be negatively affected by the presence of oxide impurities in the powders. While product composition can be progressively improved when the temperature is increased from 1800 to 1950 °C, residual porosities remain relatively high if using additive-free powders. In contrast, the introduction of 1 wt.%C markedly allows for oxides elimination by carbothermal reduction mechanism. Products consolidation is correspondingly enhanced so that relative densities of about 97% are attained. Other than the latter effect, surface oxides removal also makes powders more reactive, thus the synthesis of single-phase products is promoted. In particular, fully homogeneous (Hf0.2Mo0.2Zr0.2Ti0.2Ta0.2)B2 ceramics are obtained at relatively lower temperature conditions (1850 °C).