학술논문

Inhibition of microRNA-21 decreases the invasiveness of fibroblast-like synoviocytes in rheumatoid arthritis via TGFβ/Smads signaling pathway
Document Type
article
Source
Iranian Journal of Basic Medical Sciences, Vol 19, Iss 7, Pp 787-793 (2016)
Subject
Fibroblast-like synoviocyte
Invasion
MicroRNA-21
Rheumatoid arthritis
Smads
Transforming growth factor-beta
Medicine
Language
English
ISSN
2008-3866
2008-3874
Abstract
Objective(s): MicroRNA-21 (miR21) is aberrantly elevated in rheumatoid arthritis (RA) patients, the significance of this microRNA in RA pathogenesis and treatment, however, has not been investigated. In this study, by using RA-derived fibroblast-like synoviocyte (FLS) cells as a model, we investigated the effect and corresponding mechanism of miR21 inhibition on FLSs invasion. Materials and Methods:miR21 expression in synovial tissue and FLSs in RA patients and non-RA controls were determined by stem-loop RT-PCR. The effect of miR21 on FLSs viability and invasiveness were evaluated using miR21 inhibition. Cell viability was evaluated by MTT assay and the expression of genes at mRNA and protein levels was determined by RT-PCR and Western blot, respectively. Results: Our results showed that miR21 expression was highly increased in synovial tissue and FLSs in RA patients. Also, we reported that miR21 inhibitor treatment could significantly suppress the invasiveness of FLSs without affecting cell viability. The decreased FLSs invasion by miR21 inhibition was associated with down-regulated expression of matrix metalloproteinase (MMP)-1, MMP3, and MMP13. Further analysis revealed that miR21 inhibition could suppress the expression of TGFβ1 and Smad4, but promote that of Smad7. Moreover, suppression of FLS invasion and MMPs expression by miR21 treatment could be counteracted by additional TGFβ1 treatment. Conclusion:Our results indicated that miR21 inhibition can down-regulate the expression of MMP1, MMP3, and MMP13 and consequently suppress the invasiveness of FLS, which is achieved through TGFβ1/Smad4/7 signaling pathway. The findings of this study could offer a novel approach for RA treatment.