학술논문

A Study of Low Young’s Modulus Ti–15Ta–15Nb Alloy Using TEM Analysis
Document Type
article
Source
Materials, Vol 13, Iss 24, p 5694 (2020)
Subject
Ti–15Ta–15Nb alloy
cast
microstructure
phase
kikuchi diagram analysis
orientation relationships
Technology
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Language
English
ISSN
13245694
1996-1944
Abstract
The microstructural characteristics and Young’s modulus of the as-cast Ti–15Ta–15Nb alloy are reported in this study. On the basis of the examined XRD and TEM results, the microstructure of the current alloy is essentially a mixture (α + β+ α′ + α″ + ω + H) phase. The new H phase has not previously been identified as a known phase in the Ti–Ta–Nb alloy system. On the basis of examination of the Kikuchi maps, the new H phase belongs to a tetragonal structural class with lattice parameters of a = b = 0.328 nm and c = 0.343 nm, denoting an optimal presentation of the atomic arrangement. The relationships of orientation between these phases would be {0001}α//{110}β//{1¯21¯0}ω//{101¯}H and (011¯0)α//(11¯2)β//(1¯010)ω//(121)H. Moreover, the Young’s modulus of the as-cast Ti–15Ta–15Nb alloy is approximately E = 80.2 ± 10.66 GPa. It is implied that the Young’s modulus can be decreased by the mixing of phases, especially with the presence of the H phase.