학술논문

Demonstration of Thermally Tunable Multi-Band and Ultra-Broadband Metamaterial Absorbers Maintaining High Efficiency during Tuning Process
Document Type
article
Source
Materials, Vol 14, Iss 19, p 5708 (2021)
Subject
metamaterial absorber
high efficiency tunable absorber
vanadium dioxide
terahertz (THz)
broadband absorber
Technology
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Language
English
ISSN
1996-1944
Abstract
Metamaterial absorbers (MMAs) with dynamic tuning features have attracted great attention recently, but most realizations to date have suffered from a decay in absorptivity as the working frequency shifts. Here, thermally tunable multi-band and ultra-broadband MMAs based on vanadium dioxide (VO2) are proposed, with nearly no reduction in absorption during the tuning process. Simulations demonstrated that the proposed design can be switched between two independently designable multi-band frequency ranges, with the absorptivity being maintained above 99.8%. Moreover, via designing multiple adjacent absorption spectra, an ultra-broadband switchable MMA that maintains high absorptivity during the tuning process is also demonstrated. Raising the ambient temperature from 298 K to 358 K, the broadband absorptive range shifts from 1.194–2.325 THz to 0.398–1.356 THz, while the absorptivity remains above 90%. This method has potential for THz communication, smart filtering, detecting, imaging, and so forth.