학술논문

A High-Quality Chromosome-Level Genome Assembly of a Snail Cipangopaludina cathayensis (Gastropoda: Viviparidae)
Document Type
article
Source
Genes, Vol 14, Iss 7, p 1365 (2023)
Subject
genome assembly
Cipangopaludina cathayensis
comparative genomics
Genetics
QH426-470
Language
English
ISSN
2073-4425
Abstract
Cipangopaludina cathayensis (Gastropoda: Prosobranchia; Mesogastropoda; Viviparidae) is widely distributed in the freshwater habitats of China. It is an economically important snail with high edible and medicinal value. However, the genomic resources and the reference genome of this snail are lacking. In this study, we assembled the first chromosome-level genome of C. cathayensis. The preliminary assembly genome was 1.48 Gb in size, with a contig N50 size of 93.49 Mb. The assembled sequences were anchored to nine pseudochromosomes using Hi-C data. The final genome after Hi-C correction was 1.48 Gb, with a contig N50 of 98.49 Mb and scaffold N50 of 195.21 Mb. The anchored rate of the chromosome was 99.99%. A total of 22,702 protein-coding genes were predicted. Phylogenetic analyses indicated that C. cathayensis diverged with Bellamya purificata approximately 158.10 million years ago. There were 268 expanded and 505 contracted gene families in C. cathayensis when compared with its most recent common ancestor. Five putative genes under positive selection in C. cathayensis were identified (false discovery rate C. cathayensis.