학술논문

Airborne Vertical Profiling of Mercury Speciation near Tullahoma, TN, USA
Document Type
article
Source
Atmosphere, Vol 5, Iss 3, Pp 557-574 (2014)
Subject
atmospheric mercury
gaseous elemental mercury
gaseous oxidized mercury
particulate-bound mercury
airborne measurements
vertical profile
HYSPLIT
Meteorology. Climatology
QC851-999
Language
English
ISSN
2073-4433
Abstract
Atmospheric transport and in situ oxidation are important factors influencing mercury concentrations at the surface and wet and dry deposition rates. Contributions of both natural and anthropogenic processes can significantly impact burdens of mercury on local, regional and global scales. To address these key issues in atmospheric mercury research, airborne measurements of mercury speciation and ancillary parameters were conducted over a region near Tullahoma, Tennessee, USA, from August 2012 to June 2013. Here, for the first time, we present vertical profiles of Hg speciation from aircraft for an annual cycle over the same location. These airborne measurements included gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM) and particulate bound mercury (PBM), as well as ozone (O3), sulfur dioxide (SO2), condensation nuclei (CN) and meteorological parameters. The flights, each lasting ~3 h, were conducted typically one week out of each month to characterize seasonality in mercury concentrations. Data obtained from 0 to 6 km altitudes show that GEM exhibited a relatively constant vertical profile for all seasons with an average concentration of 1.38 ± 0.17 ng∙m−3. A pronounced seasonality of GOM was observed, with the highest GOM concentrations up to 120 pg∙m−3 in the summer flights and lowest (0–20 pg∙m−3) in the winter flights. Vertical profiles of GOM show the maximum levels at altitudes between 2 and 4 km. Limited PBM measurements exhibit similar levels to GOM at all altitudes. HYSPLIT back trajectories showed that the trajectories for elevated GOM (>70 pg∙m−3) or PBM concentrations (>30 pg∙m−3) were largely associated with air masses coming from west/northwest, while events with low GOM (