학술논문

Gaseous Elemental Mercury Concentrations along the Northern Gulf of Mexico Using Passive Air Sampling, with a Comparison to Active Sampling
Document Type
article
Source
Atmosphere, Vol 11, Iss 10, p 1034 (2020)
Subject
atmospheric mercury
gaseous elemental mercury
passive air sampler
MerPAS®
seasonal trend
spatial trend
Meteorology. Climatology
QC851-999
Language
English
ISSN
2073-4433
Abstract
Mercury is a toxic element that is dispersed globally through the atmosphere. Accurately measuring airborne mercury concentrations aids understanding of the pollutant’s sources, distribution, cycling, and trends. We deployed MerPAS® passive air samplers (PAS) for ~4 weeks during each season, from spring 2019 to winter 2020, to determine gaseous elemental mercury (GEM) levels at six locations along the northern Gulf of Mexico, where the pollutant is of particular concern due to high mercury wet deposition rates and high concentrations in local seafood. The objective was to (1) evaluate spatial and seasonal trends along the Mississippi and Alabama coast, and (2) compare active and passive sampling methods for GEM at Grand Bay National Estuarine Research Reserve, an Atmospheric Mercury Network site. We observed higher GEM levels (p < 0.05) in the winter (1.53 ± 0.03 ng m−3) compared to other seasons at all sites; with the general pattern being: winter > spring > summer ≈ fall. Average GEM levels (all deployment combined) were highest at Bay St. Louis (1.36 ± 0.05 ng m−3), the western-most site nearest the New Orleans metropolitan area, and lowest at Cedar Point (1.07 ± 0.09 ng m−3), a coastal marsh with extensive vegetation that can uptake GEM. The MerPAS units compared reasonably well with the established active monitoring system, but gave slightly lower concentrations, except in the winter when the two methods were statistically similar. Both the passive and active sampling methods showed the same seasonal trends and the difference between them for each season was