학술논문

Targeting focal adhesion kinase boosts immune response in KRAS/LKB1 co-mutated lung adenocarcinoma via remodeling the tumor microenvironment
Document Type
article
Source
Experimental Hematology & Oncology, Vol 13, Iss 1, Pp 1-20 (2024)
Subject
Focal adhesion kinase
KRAS
LKB1
Drug resistance
Tumor microenvironment
Diseases of the blood and blood-forming organs
RC633-647.5
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
Language
English
ISSN
2162-3619
Abstract
Abstract Background KRAS mutation is one of the most common oncogenic drivers in NSCLC, however, the response to immunotherapy is heterogeneous owing to the distinct co-occurring genomic alterations. KRAS/LKB1 co-mutated lung adenocarcinoma displays poor response to PD-1 blockade whereas the mechanism remains undetermined. Methods We explored the specific characteristics of tumor microenvironment (TME) in KL tumors using syngeneic KRAS G12D LKB1 −/− (KL) and KRAS G12D TP53 −/− (KP) lung cancer mouse models. The impact of focal adhesion kinase (FAK) inhibitor on KL lung tumors was investigated in vitro and in vivo through evaluation of both KL cell lines and KL lung cancer mouse models. Results We identified KL tumors as “immune-cold” tumors with excessive extracellular matrix (ECM) collagen deposition that formed a physical barrier to block the infiltration of CD8+T cells. Mechanistically, abundant activated cancer-associated fibroblasts (CAFs) resulted from FAK activation contributed to the formation of the unique TME of KL tumors. FAK inhibition with a small molecular inhibitor could remodel the TME by inhibiting CAFs activation, decreasing collagen deposition and further facilitating the infiltration of anti-tumor immune cells, including CD8+ T cells, DC cells and M1-like macrophages into tumors, hence, converting “immune-cold” KL tumors into “immune-hot” tumors. The combined FAK inhibitor and PD-1 blockade therapy synergistically retarded primary and metastatic tumor growth of KL tumors. Conclusions Our study identified FAK as a promising intervention target for KL tumors and provided basis for the combination of FAK inhibitor with PD-1 blockade in the management of KL lung cancers.