학술논문

DFN modelling constrained by multiple seismic attributes using the steering pyramid technology
Document Type
article
Source
Frontiers in Earth Science, Vol 11 (2023)
Subject
seismic attributes
seismic data decomposition
composite attribute
fracture modelling
discrete fracture network (DFN)
Science
Language
English
ISSN
2296-6463
Abstract
Fracture modelling is essential for understanding fluid flow in fractured hydrocarbon reservoirs, particularly in the phase of production; however, traditional discrete fracture network (DFN) modelling methods lack constraints that reflect characteristics of fracture development. Fractures or fracture networks exhibit a high degree of randomness; as such, it is difficult to model fracture characteristics. This paper proposes a new approach for DFN modelling constrained by seismic attributes. Firstly, the steerable pyramid method is adopted to improve seismic data resolution; secondly, multiple seismic attributes are extracted and combined into a composite attribute to characterize fracture spatial distribution; finally, a DFN modelling method is established by using the composite attribute as a location constraint. To verify the effectiveness of the approach, a case study is conducted in the Bonan Depression, in East China. The results show that, compared with the traditional DFN modelling methods, the DFN modelling with the location constraint create a more realistic fracture model which accurately reflects fracture distribution characteristics. The application demonstrates the potential of wide application prospects in fractured reservoirs.