학술논문

Design of Machine Learning Prediction System Based on the Internet of Things Framework for Monitoring Fine PM Concentrations
Document Type
article
Source
Environments, Vol 8, Iss 10, p 99 (2021)
Subject
Internet of Things
machine learning
air pollution
PM2.5
wireless sensor network
Environmental technology. Sanitary engineering
TD1-1066
Language
English
ISSN
2076-3298
Abstract
In this study, a mobile air pollution sensing unit based on the Internet of Things framework was designed for monitoring the concentration of fine particulate matter in three urban areas. This unit was developed using the NodeMCU-32S microcontroller, PMS5003-G5 (particulate matter sensing module), and Ublox NEO-6M V2 (GPS positioning module). The sensing unit transmits data of the particulate matter concentration and coordinates of a polluted location to the backend server through 3G and 4G telecommunication networks for data collection. This system will complement the government’s PM2.5 data acquisition system. Mobile monitoring stations meet the air pollution monitoring needs of some areas that require special observation. For example, an AIoT development system will be installed. At intersections with intensive traffic, it can be used as a reference for government transportation departments or environmental inspection departments for environmental quality monitoring or evacuation of traffic flow. Furthermore, the particulate matter distributions in three areas, namely Xinzhuang, Sanchong, and Luzhou Districts, which are all in New Taipei City of Taiwan, were estimated using machine learning models, the data of stationary monitoring stations, and the measurements of the mobile sensing system proposed in this study. Four types of learning models were trained, namely the decision tree, random forest, multilayer perceptron, and radial basis function neural network, and their prediction results were evaluated. The root mean square error was used as the performance indicator, and the learning results indicate that the random forest model outperforms the other models for both the training and testing sets. To examine the generalizability of the learning models, the models were verified in relation to data measured on three days: 15 February, 28 February, and 1 March 2019. A comparison between the model predicted and the measured data indicates that the random forest model provides the most stable and accurate prediction values and could clearly present the distribution of highly polluted areas. The results of these models are visualized in the form of maps by using a web application. The maps allow users to understand the distribution of polluted areas intuitively.