학술논문

Sub-Shrub Components Change the Soil Water Storage Response to Daily Precipitation and Air Temperature in the Loess Plateau
Document Type
article
Source
Water, Vol 15, Iss 23, p 4157 (2023)
Subject
soil moisture
plant structure
removing treatment
water and heat exchange
rainfall
Hydraulic engineering
TC1-978
Water supply for domestic and industrial purposes
TD201-500
Language
English
ISSN
2073-4441
Abstract
Soil water shortage has become a severe issue in ecological restoration and sustainable development in the Loess Plateau, facing the challenges of climate change and vegetation restoration. This study monitored the soil water content in surface soil (0–40 cm) with different sub-shrub component treatments, including the natural condition (NC), the canopy plus the roots (CR) and only the roots (OR), to analyze the change in soil water storage (∆W) and its response to precipitation (P) and air temperature (Ta) on a daily scale. P was the main factor controlling the daily ∆W, contributing 49–52% to the variation in the daily ∆W, and Ta only explained 6–21% of the variation. Minimum P amounts of 0.74–1.12 mm and maximum Ta of 29.09–32.00 °C were the thresholds required to increase soil water storage (W). Sub-shrub components showed significant influences on soil water conservation. We found that the ∆W hierarchy for each sub-shrub treatment was NC (1.73 mm) > CR (0.71 mm) > OR (0.56 mm) on rainy days and NC (−0.53 mm) < CR (−0.36 mm) < OR (−0.06 mm) on no-rain days. Additionally, the hierarchy of the rainwater retention rate was NC (26.43%) > OR (13.71%) > CR (4.58%). Thus, a canopy could increase infiltration and hugely consume soil water at the same time, while litter could weaken or offset the canopy’s effects and the roots promote infiltration with little evaporation loss.