학술논문

Evaluation of automated computed tomography segmentation to assess body composition and mortality associations in cancer patients
Document Type
article
Source
Journal of Cachexia, Sarcopenia and Muscle, Vol 11, Iss 5, Pp 1258-1269 (2020)
Subject
Body composition
Automation
Software
Adiposity
Muscle
Sarcopenia
Diseases of the musculoskeletal system
RC925-935
Human anatomy
QM1-695
Language
English
ISSN
2190-6009
2190-5991
Abstract
Abstract Background Body composition from computed tomography (CT) scans is associated with cancer outcomes including surgical complications, chemotoxicity, and survival. Most studies manually segment CT scans, but Automatic Body composition Analyser using Computed tomography image Segmentation (ABACS) software automatically segments muscle and adipose tissues to speed analysis. Here, we externally evaluate ABACS in an independent dataset. Methods Among patients with non‐metastatic colorectal (n = 3102) and breast (n = 2888) cancer diagnosed from 2005 to 2013 at Kaiser Permanente, expert raters annotated tissue areas at the third lumbar vertebra (L3). To compare ABACS segmentation results to manual analysis, we quantified the proportion of pixel‐level image overlap using Jaccard scores and agreement between methods using intra‐class correlation coefficients for continuous tissue areas. We examined performance overall and among subgroups defined by patient and imaging characteristics. To compare the strength of the mortality associations obtained from ABACS's segmentations to manual analysis, we computed Cox proportional hazards ratios (HRs) and 95% confidence intervals (95% CI) by tertile of tissue area. Results Mean ± SD age was 63 ± 11 years for colorectal cancer patients and 56 ± 12 for breast cancer patients. There was strong agreement between manual and automatic segmentations overall and within subgroups of age, sex, body mass index, and cancer stage: average Jaccard scores and intra‐class correlation coefficients exceeded 90% for all tissues. ABACS underestimated muscle and visceral and subcutaneous adipose tissue areas by 1–2% versus manual analysis: mean differences were small at −2.35, −1.97 and −2.38 cm2, respectively. ABACS's performance was lowest for the