학술논문

A new method for in vivo assessment of corneal transparency using spectral-domain OCT.
Document Type
article
Source
PLoS ONE, Vol 18, Iss 10, p e0291613 (2023)
Subject
Medicine
Science
Language
English
ISSN
1932-6203
Abstract
Corneal transparency is essential to provide a clear view into and out of the eye, yet clinical means to assess such transparency are extremely limited and usually involve a subjective grading of visible opacities by means of slit-lamp biomicroscopy. Here, we describe an automated algorithm allowing extraction of quantitative corneal transparency parameters with standard clinical spectral-domain optical coherence tomography (SD-OCT). Our algorithm employs a novel pre-processing procedure to standardize SD-OCT image analysis and to numerically correct common instrumental artifacts before extracting mean intensity stromal-depth (z) profiles over a 6-mm-wide corneal area. The z-profiles are analyzed using our previously developed objective method that derives quantitative transparency parameters directly related to the physics of light propagation in tissues. Tissular heterogeneity is quantified by the Birge ratio Br and the photon mean-free path (ls) is determined for homogeneous tissues (i.e., Br~1). SD-OCT images of 83 normal corneas (ages 22-50 years) from a standard SD-OCT device (RTVue-XR Avanti, Optovue Inc.) were processed to establish a normative dataset of transparency values. After confirming stromal homogeneity (Br