학술논문

Pixelwise Complex-Valued Neural Network Based on 1D FFT of Hyperspectral Data to Improve Green Pepper Segmentation in Agriculture
Document Type
article
Source
Applied Sciences, Vol 13, Iss 4, p 2697 (2023)
Subject
remote sensing
hyperspectral imaging
complex-valued neural network
discrete Fourier transform
agriculture
Technology
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
Language
English
ISSN
2076-3417
Abstract
It seems difficult to recognize an object from its background with similar color using conventional segmentation methods. An efficient way is to utilize hyperspectral images that contain more wave bands and richer information than only RGB components. Particularly in our task, we aim to separate a pepper from densely packed green leaves for automatic picking in agriculture. Given that hyperspectral imaging can be regarded as a kind of wave propagation process, we make a novel attempt of introducing a complex neural network tailored for wave-related problems. Due to the lack of hyperspectral data, pixelwise training is deployed, and 1D fast Fourier transform of the hyperspectral data is used for the construction of complex input. Experimental results have showcased that a complex neural network outperforms a real-valued one in terms of detection accuracy by 3.9% and F1 score by 1.33%. Moreover, it enables the ability to select frequency bands used such as low-frequency components to boost performance as well as prevent overfitting problems for learning more generalization features. Thus, we put forward a lightweight pixelwise complex model for hyperspectral-related problems and provide an efficient way for green pepper automatic picking in agriculture using small datasets.