학술논문

The warming Tibetan Plateau improves winter air quality in the Sichuan Basin, China
Document Type
article
Author
Source
Atmospheric Chemistry and Physics, Vol 20, Pp 14873-14887 (2020)
Subject
Physics
QC1-999
Chemistry
QD1-999
Language
English
ISSN
1680-7316
1680-7324
Abstract
Impacts of global climate change on the occurrence and development of air pollution have attracted more attention. This study investigates impacts of the warming Tibetan Plateau on air quality in the Sichuan Basin. Meteorological observations and ERA-Interim reanalysis data reveal that the plateau has been rapidly warming during the last 40 years (1979–2017), particularly in winter when the warming rate is approximately twice as much as the annual warming rate. Since 2013, the winter temperature over the plateau has even risen by 2 ∘C. Here we use the WRF-Chem model to lay emphasis on the impact of the 2 ∘C warming on air quality in the basin. The model results show that the 2 ∘C warming causes an enhanced easterly wind, an increase in the planetary boundary layer height (PBLH) and a decrease in the relative humidity (RH) in the basin. Enhanced easterly wind increases PM2.5 transport from the basin to the plateau. The elevated PBLH strengthens vertical diffusion of PM2.5, while the decreased RH significantly reduces secondary aerosol formation. Overall, PM2.5 concentration is reduced by 17.5 % (∼25.1 µg m−3), of which the reduction in primary and secondary aerosols is 5.4 and 19.7 µg m−3, respectively. These results reveal that the recent warming plateau has improved air quality in the basin, to a certain extent mitigating the air pollution therein. Nevertheless, the climate system is particularly complicated, and more studies are needed to demonstrate the impact of climate change on air quality in the downstream regions as the plateau is likely to continue warming. Highlights The Tibetan Plateau is rapidly warming, and the temperature has risen by 2 ∘C from 2013 to 2017. A warming plateau leads to an enhanced easterly wind, an increased PBLH and a decreased RH in the Sichuan Basin. The 2 ∘C warming significantly reduces PM2.5 concentration in the basin by 25.1 µg m−3, of which secondary aerosol is 19.7 µg m−3.