학술논문

Targeting DEC-205−DCIR2+ dendritic cells promotes immunological tolerance in proteolipid protein-induced experimental autoimmune encephalomyelitis
Document Type
article
Source
Molecular Medicine, Vol 24, Iss 1, Pp 1-13 (2018)
Subject
Multiple sclerosis
DCIR2
Regulatory T cells
PLP139–151
T cells
Dendritic cells
Therapeutics. Pharmacology
RM1-950
Biochemistry
QD415-436
Language
English
ISSN
1076-1551
1528-3658
Abstract
Abstract Background Dendritic cells (DC) induce adaptive responses against foreign antigens, and play an essential role in maintaining peripheral tolerance to self-antigens. Therefore they are involved in preventing fatal autoimmunity. Selective delivery of antigens to immature DC via the endocytic DEC-205 receptor on their surface promotes antigen-specific T cell tolerance, both by recessive and dominant mechanisms. We provide evidence that the induction of antigen-specific T cell tolerance is not a unique property of CD11c+CD8+DEC-205+ DCs. Methods We employed a fusion between αDCIR2 antibodies and the highly encephalitogenic peptide 139–151 of myelin-derived proteolipid protein (PLP139–151), to target CD11c +CD8- DCs with a DEC-205−DCIR2+ phenotype in vivo, and to substantially improve clinical symptoms in the PLP139–151-induced model of experimental autoimmune encephalomyelitis (EAE). Results Consistent with previous studies targeting other cell surface receptors, EAE protection mediated by αDCIR2-PLP139–151 fusion antibody (Ab) depended on an immature state of targeted DCIR2+ DCs. The mechanism of αDCIR2-PLP139–151 mAb function included the deletion of IL-17- and IFN-γ-producing pathogenic T cells, as well as the enhancement of regulatory T (Treg) cell activity. In contrast to the effect of αDEC-205+ fusion antibodies, which involves extrathymic induction of a Foxp3+ Treg cell phenotype in naïve CD4+Foxp3- T cells, treatment of animals with DCIR2+ fusion antibodies resulted in antigen-specific activation and proliferative expansion of natural Foxp3+ Treg cells. Conclusions These results suggest that multiple mechanisms can lead to the expansion of the Treg population, depending on the DC subset and receptor targeted.