학술논문

Gestational and postnatal age associations for striatal tissue iron deposition in early infancy
Document Type
article
Source
Developmental Cognitive Neuroscience, Vol 63, Iss , Pp 101286- (2023)
Subject
Tissue iron
Striatum
Subcortical development
Early brain trajectories
Development of t2* signal in infancy
Neurophysiology and neuropsychology
QP351-495
Language
English
ISSN
1878-9293
Abstract
Striatal development is crucial for later motor, cognitive, and reward behavior, but age-related change in striatal physiology during the neonatal period remains understudied. An MRI-based measure of tissue iron deposition, T2*, is a non-invasive way to probe striatal physiology neonatally, linked to dopaminergic processing and cognition in children and adults. Striatal subregions have distinct functions that may come online at different time periods in early life. To identify if there are critical periods before or after birth, we measured if striatal iron accrued with gestational age at birth [range= 34.57–41.85 weeks] or postnatal age at scan [range= 5–64 days], using MRI to probe the T2* signal in N = 83 neonates in three striatal subregions. We found iron increased with postnatal age in the pallidum and putamen but not the caudate. No significant relationship between iron and gestational age was observed. Using a subset of infants scanned at preschool age (N = 26), we show distributions of iron shift between time points. In infants, the pallidum had the least iron of the three regions but had the most by preschool age. Together, this provides evidence of distinct change for striatal subregions, a possible differentiation between motor and cognitive systems, identifying a mechanism that may impact future trajectories.