학술논문

Anomalous Stochastic Transport of Particles with Self-Reinforcement and Mittag–Leffler Distributed Rest Times
Document Type
article
Source
Fractal and Fractional, Vol 5, Iss 4, p 221 (2021)
Subject
anomalous stochastic transport
self-reinforcement
subdiffusion
Mittag–Leffler distributed rest state
Thermodynamics
QC310.15-319
Mathematics
QA1-939
Analysis
QA299.6-433
Language
English
ISSN
2504-3110
Abstract
We introduce a persistent random walk model for the stochastic transport of particles involving self-reinforcement and a rest state with Mittag–Leffler distributed residence times. The model involves a system of hyperbolic partial differential equations with a non-local switching term described by the Riemann–Liouville derivative. From Monte Carlo simulations, we found that this model generates superdiffusion at intermediate times but reverts to subdiffusion in the long time asymptotic limit. To confirm this result, we derived the equation for the second moment and find that it is subdiffusive in the long time limit. Analyses of two simpler models are also included, which demonstrate the dominance of the Mittag–Leffler rest state leading to subdiffusion. The observation that transient superdiffusion occurs in an eventually subdiffusive system is a useful feature for applications in stochastic biological transport.