학술논문

Atmospheric inertia-gravity waves retrieved from level-2 data of the satellite microwave limb sounder Aura/MLS
Document Type
article
Source
Annales Geophysicae, Vol 34, Pp 781-788 (2016)
Subject
Science
Physics
QC1-999
Geophysics. Cosmic physics
QC801-809
Language
English
ISSN
0992-7689
1432-0576
Abstract
The temperature profiles of the satellite experiment Aura/MLS are horizontally spaced by 1.5° or 165 km along the satellite orbit. These level-2 data contain valuable information about horizontal fluctuations in temperature, which are mainly induced by inertia-gravity waves. Wave periods of 2–12 h, horizontal wavelengths of 200–1500 km, and vertical wavelengths of 6–30 km efficiently contribute to the standard deviation of the horizontal temperature fluctuations. The study retrieves and discusses the global distributions of inertia-gravity waves in the stratosphere and mesosphere during July 2015 and January 2016. We find many patterns that were previously present in data of TIMED/SABER, Aura/HIRDLS, and ECMWF analysis. However, it seems that Aura/MLS achieves a higher vertical resolution in the gravity wave maps since the maps are derived from the analysis of horizontal fluctuations along the orbit of the sounding volume. The zonal mean of the inertia-gravity wave distribution shows vertical modulations with scales of 10–20 km. Enhanced wave amplitudes occur in regions of increased zonal wind or in the vicinity of strong wind gradients. Further, we find a banana-like shape of enhanced inertia-gravity waves above the Andes in the winter mesosphere. We find areas of enhanced inertia-gravity wave activity above tropical deep convection zones at 100 hPa (z ∼ 13 km). Finally, we study the temporal evolution of inertia-gravity wave activity at 100 hPa in the African longitude sector from December 2015 to February 2016.