학술논문

Resistance jump training may reverse the weakened biomechanical behavior of tendons of diabetic Wistar rats
Document Type
article
Source
Fisioterapia e Pesquisa, Vol 24, Iss 4, Pp 399-405 (2017)
Subject
Diabetes Mellitus
Resistance Training
Connective Tissue
Animal Model
Therapeutics. Pharmacology
RM1-950
Language
English
Spanish; Castilian
Portuguese
ISSN
2316-9117
1809-2950
Abstract
ABSTRACT Background: resistance training is widely applied in non-diabetic physical protocol showing effectiveness in improving the tendon tissue. To address this gap, we assessed the effects of resistance training on aquatic environment, on the biomechanical properties of the calcaneal tendon of diabetic Wistar rats. Methods: 59 male Wistar rats were evaluated for 60 days, they were randomly divided into the following groups: Sedentary Control Group (SCG, n=15), Sedentary Diabetic Group (SDG, n=15), Trained Control Group (TCG, n=14) and Trained Diabetic Group (TDG, n=15). After randomization the animals from the SDG and the TDG were induced to Diabetes Mellitus by intraperitoneal injection of Streptozotocin (60 mg/kg). The animals on the trained groups performed resistance exercise that consisted of jumping in an aquatic environment. After nine weeks the calcaneal tendons were collected and tractioned on a conventional mechanical testing machine. Results: the analysis of biomechanical parameters showed lower values in elastic modulus (p=0.000), maximum strength tension (p=0.000) and energy/area (p=0.008) in TDG compared to SDG in addition to an increase on the cross-sectional area (p=0.002). There was no difference for the specific deformation variable. Conclusion: the training protocol used restored some biomechanical parameters of the calcaneal tendon in rats induced to diabetes, thus, resulting in an improvement of its mechanical efficiency.