학술논문

Thermoelectric Enhancements in PbTe Alloys Due to Dislocation‐Induced Strains and Converged Bands
Document Type
article
Source
Advanced Science, Vol 7, Iss 12, Pp n/a-n/a (2020)
Subject
band convergence
dislocations
lattice strain
PbTe
thermoelectronics
Science
Language
English
ISSN
2198-3844
Abstract
Abstract In‐grain dislocation‐induced lattice strain fluctuations are recently revealed as an effective avenue for minimizing the lattice thermal conductivity. This effect could be integratable with electronic enhancements such as by band convergence, for a great advancement in thermoelectric performance. This motivates the current work to focus on the thermoelectric enhancements of p‐type PbTe alloys, where monotelluride‐alloying and Na‐doping are used for a simultaneous manipulation on both dislocation and band structures. As confirmed by synchrotron X‐ray diffractions and Raman measurements, the resultant dense in‐grain dislocations induce lattice strain fluctuations for broadening the phonon dispersion, leading to an exceptionally low lattice thermal conductivity of ≈0. 4 W m‐K−1. Band structure calculations reveal the convergence of valence bands due to monotelluride‐alloying. Eventually, the integration of both electronic and thermal improvements lead to a realization of an extraordinary figure of merit zT of ≈2.5 in Na0.03Eu0.03Cd0.03Pb0.91Te alloy at 850 K.