학술논문

Measuring secondhand smoke in homes in Malaysia: A feasibility study comparing indoor fine particulate (PM 2.5 ) concentrations following an educational feedback intervention to create smoke-free homes during the COVID-19 pandemic
Document Type
article
Source
Tobacco Induced Diseases, Vol 20, Iss July, Pp 1-13 (2022)
Subject
secondhand smoke
particulate matter
monitoring
air-quality feedback
tobacco intervention
Diseases of the respiratory system
RC705-779
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
Language
English
ISSN
1617-9625
Abstract
Introduction Extensive regulations have been introduced to reduce secondhand smoke (SHS) exposure among non-smokers in Malaysia. However, there is still a need to encourage behavior change of smokers in relation to making homes smokefree. This feasibility study aimed to use low-cost air pollution monitors to quantify SHS concentrations in Malaysian households and to explore the practicality of using personalized feedback in educating families to make their homes smoke-free. Methods A total of 35 smokers in three states in Malaysia were recruited via snowball and convenience sampling methods. Indoor fine particulate (PM 2.5 ) concentrations in participants’ homes were measured for 7 days before and after educational intervention using a pre-defined template, which included personalized airquality feedback, and information on SHS impacts were given. The feedback was delivered over two 20-minute phone calls or in-person sessions following the completion of the air-quality measurements. Data were corrected for outdoor PM 2.5 concentrations from the nearest environmental monitor. Results Despite the challenges in conducting the project during COVID-19 pandemic, the delivery of the intervention was found to be feasible. Twenty-seven (77%) out of 35 participants completed PM 2.5 measurements and received a complete intervention. The median (IQR: 25th –75th percentile concentrations) SHS-PM 2.5 concentrations at baseline and follow-up were 18.3 μg/m 3 (IQR: 13.3–28.3) and 16.2 μg/m 3 (IQR: 10.4 – 25.6), respectively. There was a reduction of SHS-PM 2.5 concentrations at follow-up measurement in the houses of 17 participants (63%). The change in corrected indoor PM 2.5 concentrations between baseline and followup was not statistically significant (Z= -1.01, p=0.29). Conclusions This educational intervention, combining the use of a low-cost air particle counter with personalized air-quality feedback, was found to be feasible in the Malaysian setting. It has potential to trigger behavior change among smokers, reducing indoor smoking and consequent SHS concentrations, and increasing smoke-free home implementation. A large-scale trial is needed.