학술논문

Serum N‐Glycome analysis reveals pancreatic cancer disease signatures
Document Type
article
Source
Cancer Medicine, Vol 9, Iss 22, Pp 8519-8529 (2020)
Subject
cancer biomarker analysis
mass spectrometry‐based N‐glycan profiling
N‐glycome analysis
pancreatic cancer
serum test
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
Language
English
ISSN
2045-7634
Abstract
Abstract Background &Aims Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer type with loco‐regional spread that makes the tumor surgically unresectable. Novel diagnostic tools are needed to improve detection of PDAC and increase patient survival. In this study we explore serum protein N‐glycan profiles from PDAC patients with regard to their applicability to serve as a disease biomarker panel. Methods Total serum N‐glycome analysis was applied to a discovery set (86 PDAC cases/84 controls) followed by independent validation (26 cases/26 controls) using in‐house collected serum specimens. Protein N‐glycan profiles were obtained using ultrahigh resolution mass spectrometry and included linkage‐specific sialic acid information. N‐glycans were relatively quantified and case‐control classification performance was evaluated based on glycosylation traits such as branching, fucosylation, and sialylation. Results In PDAC patients a higher level of branching (OR 6.19, P‐value 9.21 × 10−11) and (antenna)fucosylation (OR 13.27, P‐value 2.31 × 10−9) of N‐glycans was found. Furthermore, the ratio of α2,6‐ vs α2,3‐linked sialylation was higher in patients compared to healthy controls. A classification model built with three glycosylation traits was used for discovery (AUC 0.88) and independent validation (AUC 0.81), with sensitivity and specificity values of 0.85 and 0.71 for the discovery set and 0.75 and 0.72 for the validation set. Conclusion Serum N‐glycome analysis revealed glycosylation differences that allow classification of PDAC patients from healthy controls. It was demonstrated that glycosylation traits rather than single N‐glycan structures obtained in this clinical glycomics study can serve as a basis for further development of a blood‐based diagnostic test.