학술논문

The effect of manipulating glucuronic acid biosynthetic pathway in Bacillus subtilis strain on hyaluronic acid production
Document Type
article
Source
AMB Express, Vol 13, Iss 1, Pp 1-12 (2023)
Subject
Biosynthetic pathway genes
Glucuronic acid
Hyaluronic acid
Metabolic engineering
Recombinant Bacillus subtilis
Biotechnology
TP248.13-248.65
Microbiology
QR1-502
Language
English
ISSN
2191-0855
Abstract
Abstract Hyaluronic acid (HA), composed of glucuronic acid (GlcUA) and N-acetyl glucoseamine (GlcNAc), is a versatile biopolymer with high commercial value and innumerous physiological roles and pharmaceutical applications. The hasA gene has main role in HA biosynthesis by Streptococcus strain as a natural producer. The hasB and hasC genes are also mediate GlcUA precursor biosynthesis. In the present study, S. equisimilis hasA gene; B. subtilis tuaD and gtaB genes for GlcUA precursors enhancement, and vgb gene coding bacterial hemoglobin as an oxygen provider were used to construct the B. subtilis strain for HA production. RBSHA (hasA), RBSHA2 (hasA/tuaD/gtaB), and RBSHA3 (hasA/tuaD/gtaB/vgb) strains were developed and confirmed through genotype and phenotype analysis. After HA production and purification, FTIR spectroscopy confirmed the produced HA structures. HA assay showed the highest HA titer for RBSHA3 (2.1 ± 0.18 mg/ml) and then RBSHA2 (1.9 ± 0.03 mg/ml), and RBSHA (0.6 ± 0.14 mg/ml). Statistical analysis indicated there is no significant difference in HA titer between RBSHA2 and RBSHA3 strains (p-value > 0.05), however, these strains produced HA approximately 4-fold higher than that of RBSHA strain. Agarose gel electrophoresis showed the same molecular weight (