학술논문

Behavior of Engineered Cementitious Composites (ECCs) Subjected to Coupled Sustained Flexural Load and Salt Frost
Document Type
article
Source
Materials, Vol 16, Iss 1, p 165 (2022)
Subject
engineered cementitious composites (ECCs)
salt frost
sustained flexural load
chloride penetration depth
free chloride profile
Technology
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Language
English
ISSN
1996-1944
Abstract
The performance of engineered cementitious composites (ECCs) under coupled salt freezing and loaded conditions is important for its application on the transportation infrastructure. However, in most of the studies, the specimens were generally loaded prior to the freezing. The influence of sustained load was merely considered. To this end, four sustained deflection levels, i.e., 0%, 10%, 30% and 50% of the deflection at the ultimate flexural strength, and three salt concentrations (1%, 3% and 5%) were applied. Prior to the salt frost resistance test, the fluid absorption of ECC specimens under various conditions were measured. The changes in relative dynamic elastic modulus (RDEM) during the freeze–thaw cycles were captured. The depth and the content profile of free chloride were measured after the coupled sustained load and freezing and thawing cycles. It is shown that 3% NaCl solution leads to the largest deterioration in all cases. There is no visible flaking or damage occurring on the surface. The relationships between locally sustained flexural stress and RDEM loss and also locally sustained flexural stress and free chloride penetration depth were proposed and showed satisfactory results. It is concluded that when ECC is subjected to the FTCs under 1% de-ice salt solution, no depassivation of the steel is expected even under a large deflection level. In terms of 3% and 5% salt solution, the thickness of cover should be no less than 20 mm when a deflection level of 0.5 is applied.