학술논문

A Newly Developed Algorithm for Cloud Shadow Detection—TIP Method
Document Type
article
Source
Remote Sensing, Vol 14, Iss 12, p 2922 (2022)
Subject
Sentinel-2
cloud shadow masking
TIP method
PACO
ATCOR
Science
Language
English
ISSN
2072-4292
Abstract
The masking of cloud shadows in optical satellite imagery is an important step in automated processing chains. A new method (the TIP method) for cloud shadow detection in multi-spectral satellite images is presented and compared to current methods. The TIP method is based on the evaluation of thresholds, indices and projections. Most state-of-the-art methods solemnly rely on one of these evaluation steps or on a complex working mechanism. Instead, the new method incorporates three basic evaluation steps into one algorithm for easy and accurate cloud shadow detection. Furthermore the performance of the masking algorithms provided by the software packages ATCOR (“Atmospheric Correction”) and PACO (“Python-based Atmospheric Correction”) is compared with that of the newly implemented TIP method on a set of 20 Sentinel-2 scenes distributed over the globe, covering a wide variety of environments and climates. The algorithms incorporated in each piece of masking software use the class of cloud shadows, but they employ different rules and class-specific thresholds. Classification results are compared to the assessment of an expert human interpreter. The class assignment of the human interpreter is considered as reference or “truth”. The overall accuracies for the class cloud shadows of ATCOR and PACO (including TIP) for difference areas of the selected scenes are 70.4% and 76.6% respectively. The difference area encompasses the parts of the classification image where the classification maps disagree. User and producer accuracies for the class cloud shadow are strongly scene-dependent, typically varying between 45% and 95%. The experimental results show that the proposed TIP method based on thresholds, indices and projections can obtain improved cloud shadow detection performance.