학술논문

Construction and on-site performance of the LHAASO WFCTA camera
Document Type
article
Author
F. AharonianQ. AnAxikeguL. X. BaiY. X. BaiY. W. BaoD. BastieriX. J. BiY. J. BiH. CaiJ. T. CaiZ. CaoJ. ChangJ. F. ChangX. C. ChangB. M. ChenJ. ChenL. ChenM. J. ChenM. L. ChenQ. H. ChenS. H. ChenS. Z. ChenT. L. ChenX. L. ChenY. ChenN. ChengY. D. ChengS. W. CuiX. H. CuiY. D. CuiB. Z. DaiH. L. DaiZ. G. DaiDanzengluobuD. della VolpeB. D’Ettorre PiazzoliX. J. DongJ. H. FanY. Z. FanZ. X. FanJ. FangK. FangC. F. FengL. FengS. H. FengY. L. FengB. GaoC. D. GaoQ. GaoW. GaoM. M. GeL. S. GengG. H. GongQ. B. GouM. H. GuJ. G. GuoX. L. GuoY. Q. GuoY. Y. GuoY. A. HanH. H. HeH. N. HeJ. C. HeS. L. HeX. B. HeY. HeM. HellerY. K. HorC. HouX. HouH. B. HuS. HuS. C. HuX. J. HuD. H. HuangQ. L. HuangW. H. HuangX. T. HuangZ. C. HuangF. JiX. L. JiH. Y. JiaK. JiangZ. J. JiangC. JinD. KuleshovK. LevochkinB. B. LiC. LiF. LiH. B. LiH. C. LiH. Y. LiJ. LiK. LiW. L. LiX. LiX. R. LiY. LiY. Z. LiZ. LiE. W. LiangY. F. LiangS. J. LinB. LiuC. LiuD. LiuH. LiuH. D. LiuJ. LiuJ. L. LiuJ. S. LiuJ. Y. LiuM. Y. LiuR. Y. LiuS. M. LiuW. LiuY. N. LiuZ. X. LiuW. J. LongR. LuH. K. LvB. Q. MaL. L. MaX. H. MaJ. R. MaoA. MasoodW. MitthumsiriT. MontaruliY. C. NanB. Y. PangP. PattarakijwanichZ. Y. PeiM. Y. QiD. RuffoloV. RulevA. SáizL. ShaoO. ShchegolevX. D. ShengJ. R. ShiH. C. SongYu. V. StenkinV. StepanovQ. N. SunX. N. SunZ. B. SunP. H. T. TamZ. B. TangW. W. TianB. D. WangC. WangH. WangH. G. WangJ. C. WangJ. S. WangL. P. WangL. Y. WangR. N. WangW. WangX. G. WangX. J. WangX. Y. WangY. D. WangY. J. WangY. P. WangZ. WangZ. H. WangZ. X. WangD. M. WeiJ. J. WeiY. J. WeiT. WenC. Y. WuH. R. WuS. WuW. X. WuX. F. WuS. Q. XiJ. XiaJ. J. XiaG. M. XiangG. XiaoH. B. XiaoG. G. XinY. L. XinY. XingD. L. XuR. X. XuL. XueD. H. YanC. W. YangF. F. YangJ. Y. YangL. L. YangM. J. YangR. Z. YangS. B. YangY. H. YaoZ. G. YaoY. M. YeL. Q. YinN. YinX. H. YouZ. Y. YouY. H. YuQ. YuanH. D. ZengT. X. ZengW. ZengZ. K. ZengM. ZhaX. X. ZhaiB. B. ZhangH. M. ZhangH. Y. ZhangJ. L. ZhangJ. W. ZhangL. ZhangL. X. ZhangP. F. ZhangP. P. ZhangR. ZhangS. R. ZhangS S. ZhangX. ZhangX. P. ZhangY. ZhangY. F. ZhangY. L. ZhangB. ZhaoJ. ZhaoL. ZhaoL. Z. ZhaoS. P. ZhaoF. ZhengY. ZhengB. ZhouH. ZhouJ. N. ZhouP. ZhouR. ZhouX. X. ZhouC. G. ZhuF. R. ZhuH. ZhuK. J. ZhuX. ZuoThe LHAASO Collaboration
Source
European Physical Journal C: Particles and Fields, Vol 81, Iss 7, Pp 1-15 (2021)
Subject
Astrophysics
QB460-466
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Language
English
ISSN
1434-6044
1434-6052
Abstract
Abstract The focal plane camera is the core component of the Wide Field-of-view Cherenkov/fluorescence Telescope Array (WFCTA) of the Large High-Altitude Air Shower Observatory (LHAASO). Because of the capability of working under moonlight without aging, silicon photomultipliers (SiPM) have been proven to be not only an alternative but also an improvement to conventional photomultiplier tubes (PMT) in this application. Eighteen SiPM-based cameras with square light funnels have been built for WFCTA. The telescopes have collected more than 100 million cosmic ray events and preliminary results indicate that these cameras are capable of working under moonlight. The characteristics of the light funnels and SiPMs pose challenges (e.g. dynamic range, dark count rate, assembly techniques). In this paper, we present the design features, manufacturing techniques and performances of these cameras. Finally, the test facilities, the test methods and results of SiPMs in the cameras are reported here.