학술논문

Synthesis by Sol–Gel Route of Organic–Inorganic Hybrid Material: Chemical Characterization and In Vitro Release Study
Document Type
article
Source
Applied Sciences, Vol 13, Iss 14, p 8410 (2023)
Subject
hybrid materials
sol–gel
solid-state NMR
FT-IR
FT-IR deconvolution
drug delivery
Technology
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
Language
English
ISSN
2076-3417
Abstract
Hybrid materials, composed of organic and inorganic components at the nanometer or molecular level, have emerged as a promising material class at the forefront of technological progress. Their potential applications in the biological and medical fields have garnered significant interest, particularly in the context of incorporating antioxidant compounds. This study focuses on the synthesis and characterization of a sol–gel-derived hybrid material, consisting of silica (S), polyethylene glycol (P), and the antioxidant flavonoid quercetin (Q). By varying the concentrations of Q and P, the structural and biological properties of the SPQ hybrid systems were investigated. Structural analysis using Fourier-transform infrared (FT-IR) and solid-state nuclear magnetic resonance (NMR) spectroscopies provided insights into the material composition and morphology, giving information about the interactions between the organic and inorganic phases. Additionally, the in vitro release study revealed a controlled release of quercetin over time, demonstrating that the hybrid materials possess a suitable application for drug delivery.