학술논문

Cellular reprogramming is driven by widespread rewiring of promoter-enhancer interactions
Document Type
article
Source
BMC Biology, Vol 21, Iss 1, Pp 1-18 (2023)
Subject
Pre-B cell
Macrophage
C/EBPα
Hi-C
Promoter-Capture Hi-C(PCHi-C)
Long-range interactions
Biology (General)
QH301-705.5
Language
English
ISSN
1741-7007
Abstract
Abstract Background Long-range interactions between promoters and cis-regulatory elements, such as enhancers, play critical roles in gene regulation. However, the role of three-dimensional (3D) chromatin structure in orchestrating changes in transcriptional regulation during direct cell reprogramming is not fully understood. Results Here, we performed integrated analyses of chromosomal architecture, epigenetics, and gene expression using Hi-C, promoter Capture Hi-C (PCHi-C), ChIP-seq, and RNA-seq during trans-differentiation of Pre-B cells into macrophages with a β-estradiol inducible C/EBPαER transgene. Within 1h of β-estradiol induction, C/EBPα translocated from the cytoplasm to the nucleus, binding to thousands of promoters and putative regulatory elements, resulting in the downregulation of Pre-B cell-specific genes and induction of macrophage-specific genes. Hi-C results were remarkably consistent throughout trans-differentiation, revealing only a small number of TAD boundary location changes, and A/B compartment switches despite significant changes in the expression of thousands of genes. PCHi-C revealed widespread changes in promoter-anchored loops with decreased interactions in parallel with decreased gene expression, and new and increased promoter-anchored interactions in parallel with increased expression of macrophage-specific genes. Conclusions Overall, our data demonstrate that C/EBPα-induced trans-differentiation involves few changes in genome architecture at the level of TADs and A/B compartments, in contrast with widespread reorganization of thousands of promoter-anchored loops in association with changes in gene expression and cell identity.