학술논문

Effect of Scanning Routes on the Stress and Deformation of Overhang Structures Fabricated by SLM
Document Type
article
Source
Materials, Vol 12, Iss 1, p 47 (2018)
Subject
SLM
overhang
scanning route
residual stress
deformation
Technology
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Language
English
ISSN
1996-1944
Abstract
Selective laser melting (SLM) is a promising manufacturing method for the construction of complicated precision parts. However, deformation of the overhang during the fabrication process and post treatment is still a common problem. In this paper, the effect of the scanning route on the residual stress and deformation of fabricated AlSi10Mg overhang specimens by SLM was investigated. Different scanning routes for the overhang including longitudinal direction, transverse direction, and the alternation between these two scanning routes in consecutive layers were studied by experiments within this study. Numerical simulation was utilized to measure the stress of the specimens while deformation prediction was used for the different scanning routes. Both the experimental and simulated results showed that the scanning route had a substantial influence on the residual stress and deformation of the specimens. The longitudinal scanning resulted in significant upward bending deformation of the overhang as it was cut from the baseplate. However, there was less deformation for the overhangs fabricated by transverse and alternating scanning routes. A transverse scanning route is helpful for the reduction of residual stress in the longitudinal direction and the corresponding deformation.