학술논문

Using source-associated mobile genetic elements to identify zoonotic extraintestinal E. coli infections
Document Type
article
Source
One Health, Vol 16, Iss , Pp 100518- (2023)
Subject
Escherichia coli
Infectious diseases
Urinary tract infection
Zoonosis
Foodborne
Mobile genetic element
Medicine (General)
R5-920
Language
English
ISSN
2352-7714
Abstract
A one-health perspective may provide new and actionable information about Escherichia coli transmission. E. coli colonizes a broad range of vertebrates, including humans and food-production animals, and is a leading cause of bladder, kidney, and bloodstream infections in humans. Substantial evidence supports foodborne transmission of pathogenic E. coli strains from food animals to humans. However, the relative contribution of foodborne zoonotic E. coli (FZEC) to the human extraintestinal disease burden and the distinguishing characteristics of such strains remain undefined. Using a comparative genomic analysis of a large collection of contemporaneous, geographically-matched clinical and meat-source E. coli isolates (n = 3111), we identified 17 source-associated mobile genetic elements – predominantly plasmids and bacteriophages – and integrated them into a novel Bayesian latent class model to predict the origins of clinical E. coli isolates. We estimated that approximately 8 % of human extraintestinal E. coli infections (mostly urinary tract infections) in our study population were caused by FZEC. FZEC strains were equally likely to cause symptomatic disease as non-FZEC strains. Two FZEC lineages, ST131-H22 and ST58, appeared to have particularly high virulence potential. Our findings imply that FZEC strains collectively cause more urinary tract infections than does any single non-E. coli uropathogenic species (e.g., Klebsiella pneumoniae). Our novel approach can be applied in other settings to identify the highest-risk FZEC strains, determine their sources, and inform new one-health strategies to decrease the heavy public health burden imposed by extraintestinal E. coli infections.