학술논문

Identifying episodic carbon monoxide emission events in the MOPITT measurement dataset
Document Type
article
Source
Atmospheric Chemistry and Physics, Vol 24, Pp 4253-4263 (2024)
Subject
Physics
QC1-999
Chemistry
QD1-999
Language
English
ISSN
1680-7316
1680-7324
Abstract
The Measurements Of Pollution In The Troposphere (MOPITT) instrument aboard NASA's Terra satellite has been measuring upwelling radiance in a nadir-viewing mode since March 2000. These radiance measurements are inverted to yield estimates of carbon monoxide (CO) profiles and total columns, providing the longest satellite record of this trace gas to date. The CO measurements from MOPITT have been used in a variety of ways, including trend analyses and the construction of CO budgets. However, their use is complicated by the influence of episodic emission events, which release large quantities of CO into the atmosphere with irregular timing, such as large sporadic wildfires of natural or anthropogenic origin. The chaotic nature of these events is a large source of variability in CO budgets and models, requiring that these events be well characterized in order to develop an improved understanding of the role they have in influencing tropospheric CO. This study describes the development of a multistep algorithm that is used to identify large episodic emission events using daily mean Level 2 (L2) MOPITT total column measurements gridded to a 0.5 by 0.5° spatial resolution. The core component of this procedure involves empirically determining the expectation density function (EDF) that describes the departure of daily-mean CO observations from the baseline behaviour of CO, as described by its periodic components and trends. The EDFs employed are not assumed to be symmetric but instead are constructed from a pair of superimposed normal distributions. Enhancement flag files are produced following this methodology, identifying the episodic events that show strong enhancement of CO outside of the range of expected CO behaviour and are now made available for the period 3 March 2000 to 31 July 2022. The distribution and frequency of these flagged measurements over this 22-year period are analyzed in order to illustrate the robustness of this method.