학술논문

Symbiosis constraints: Strong mycobiont control limits nutrient response in lichens
Document Type
article
Source
Ecology and Evolution, Vol 7, Iss 18, Pp 7420-7433 (2017)
Subject
CN stable isotopes
lichen
nitrogen
Peltigera aphthosa (L.) Willd.
phosphorus
photosynthesis
Ecology
QH540-549.5
Language
English
ISSN
2045-7758
Abstract
Abstract Symbioses such as lichens are potentially threatened by drastic environmental changes. We used the lichen Peltigera aphthosa—a symbiosis between a fungus (mycobiont), a green alga (Coccomyxa sp.), and N2‐fixing cyanobacteria (Nostoc sp.)—as a model organism to assess the effects of environmental perturbations in nitrogen (N) or phosphorus (P). Growth, carbon (C) and N stable isotopes, CNP concentrations, and specific markers were analyzed in whole thalli and the partners after 4 months of daily nutrient additions in the field. Thallus N was 40% higher in N‐fertilized thalli, amino acid concentrations were twice as high, while fungal chitin but not ergosterol was lower. Nitrogen also resulted in a thicker algal layer and density, and a higher δ13C abundance in all three partners. Photosynthesis was not affected by either N or P. Thallus growth increased with light dose independent of fertilization regime. We conclude that faster algal growth compared to fungal lead to increased competition for light and CO2 among the Coccomyxa cells, and for C between alga and fungus, resulting in neither photosynthesis nor thallus growth responded to N fertilization. This suggests that the symbiotic lifestyle of lichens may prevent them from utilizing nutrient abundance to increase C assimilation and growth.