학술논문

Potential for a precision measurement of solar pp neutrinos in the Serappis experiment
Document Type
article
Source
European Physical Journal C: Particles and Fields, Vol 82, Iss 9, Pp 1-12 (2022)
Subject
Astrophysics
QB460-466
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Language
English
ISSN
1434-6052
Abstract
Abstract The Serappis (SEarch for RAre PP-neutrinos In Scintillator) project aims at a precision measurement of the flux of solar pp neutrinos on the few-percent level. Such a measurement will be a relevant contribution to the study of solar neutrino oscillation parameters and a sensitive test of the equilibrium between solar energy output in neutrinos and electromagnetic radiation (solar luminosity constraint). The concept of Serappis relies on a small organic liquid scintillator detector ( $$\sim $$ ∼ 20 m $$^3$$ 3 ) with excellent energy resolution ( $$\sim $$ ∼ 2.5% at 1 MeV), low internal background and sufficient shielding from surrounding radioactivity. This can be achieved by a minor upgrade of the OSIRIS facility at the site of the JUNO neutrino experiment in southern China. To go substantially beyond current accuracy levels for the pp flux, an organic scintillator with ultra-low $$ {^{14}\hbox {C}}$$ 14 C levels (below $$10^{-18}$$ 10 - 18 ) is required. The existing OSIRIS detector and JUNO infrastructure will be instrumental in identifying suitable scintillator materials, offering a unique chance for a low-budget high-precision measurement of a fundamental property of our Sun that will be otherwise hard to access.