학술논문

Efficient Two-Pass 3-D Speckle Tracking for Ultrasound Imaging
Document Type
article
Source
IEEE Access, Vol 6, Pp 17415-17428 (2018)
Subject
3-D speckle tracking
ultrasound imaging
ultrasound elasticity imaging
PatchMatch
multi-pass tracking
strain imaging
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Language
English
ISSN
2169-3536
Abstract
Speckle tracking based on block matching is the most common method for multi-dimensional motion estimation in ultrasound elasticity imaging. Extension of 2-D methods to 3-D has been problematic because of the large computational load of 3-D tracking, as well as performance issues related to the low frame (volume) rates of 3-D images. To address both of these problems, we have developed an efficient two-pass tracking method suited to cardiac elasticity imaging. PatchMatch, originally developed for image editing, has been adapted for ultrasound to provide first-pass displacement estimates. Second-pass estimation uses conventional block matching within a much smaller search region. 3-D displacements are then obtained using correlation filtering previously shown to be effective against speckle decorrelation. Both simulated and in vivo canine cardiac results demonstrate that the proposed two-pass method reduces computational cost compared with conventional 3-D exhaustive search by a factor of 10. Moreover, it outperforms onepass tracking by a factor of about 3 in terms of root-mean-square error relative to available ground-truth displacements.