학술논문

The effect of space arrangement between anterior teeth on their retraction with clear aligners in first premolar extraction treatment: a finite element study
Document Type
article
Source
Progress in Orthodontics, Vol 24, Iss 1, Pp 1-12 (2023)
Subject
Clear aligner
Aligner deformation
Anterior teeth
Tooth extraction
Finite element study
Dentistry
RK1-715
Language
English
ISSN
2196-1042
Abstract
Abstract Introduction Clear aligner therapy has become increasingly popular in recent years, although it has encountered several difficulties in premolar extraction treatment. These difficulties include anterior dentition, lingual tipping and extrusion. The design of the present clinical scheme usually set a tiny space between the anterior teeth before retraction in order to obtain an ideal outcome. The objective of our research was to analyze the effect of the existing spaces during retraction. Methods Models including maxillary dentition without first premolars, maxilla, periodontal ligaments, gingiva, or aligners were constructed and imported to an ANSYS workbench. Five groups of models were created: without spaces and with 0.25, 0.50, 0.75 and 1.00 mm spaces between the anterior dentition. A 0.20 mm retraction step was applied to all the groups. Results As the spaces between the anterior dentition increased, the bowing effect of the aligner caused by the passive forces decreased gradually. Accordingly, the degree of extrusion of the anterior dentition was alleviated significantly, while sagittal movement was reduced. However, the overall movement tended to be a bodily displacement rather than tipping. Meanwhile, maximum Von Mises stress of the periodontal ligaments (PDLs) was markedly decreased. Conclusion These analyses indicate that spaces between the anterior dentition during anterior retraction are beneficial for decreasing the tendency for extrusion of the anterior dentition and require provision of anchorage. Appropriate spaces can be designed to lest the lingual tipping and extrusion effect of the anterior teeth while simultaneously reducing the maximum stresses on PDLs.